
koye sh.,

PHYSICAL REVIEW E 69, 036122 ~2004!
Statistical methods of parameter estimation for deterministically chaotic time series
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We discuss the possibility of applying some standard statistical methods~the least-square method, the
maximum likelihood method, and the method of statistical moments for estimation of parameters! to deter-
ministically chaotic low-dimensional dynamic system~the logistic map! containing an observational noise. A
‘‘segmentation fitting’’ maximum likelihood~ML ! method is suggested to estimate the structural parameter of
the logistic map along with the initial valuex1 considered as an additional unknown parameter. The segmen-
tation fitting method, called ‘‘piece-wise’’ ML, is similar in spirit but simpler and has smaller bias than the
‘‘multiple shooting’’ previously proposed. Comparisons with different previously proposed techniques on
simulated numerical examples give favorable results~at least, for the investigated combinations of sample size
N and noise level!. Besides, unlike some suggested techniques, our method does not require thea priori
knowledge of the noise variance. We also clarify the nature of the inherent difficulties in the statistical analysis
of deterministically chaotic time series and the status of previously proposed Bayesian approaches. We note the
trade off between the need of using a large number of data points in the ML analysis to decrease the bias~to
guarantee consistency of the estimation! and the unstable nature of dynamical trajectories with exponentially
fast loss of memory of the initial condition. The method of statistical moments for the estimation of the
parameter of the logistic map is discussed. This method seems to be the unique method whose consistency for
deterministically chaotic time series is proved so far theoretically~not only numerically!.

DOI: 10.1103/PhysRevE.69.036122 PACS number~s!: 02.50.-r, 05.45.Tp, 02.60.Pn
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The problem of characterizing and quantifying a no
nonlinear dynamical chaotic system from a finite realizat
of a time series of measurements is full of difficulties. T
first one is that one rarely has the luxury of knowing t
underlying dynamics, i.e., one does not in general know
underlying equations of evolution. Techniques to reconstr
a parametric representation of the time series then may
to so-called model errors.

Even in the rare situations where one can ascertain
the measurements correspond to a known set of equa
with additive noise, the chaotic nature of the dynam
makes the estimation of the model parameters from t
series surprisingly difficult. This is true even for low
dimensional systems, another even rarer instance in natu
occurring time series.

Here, we revisit the problem proposed by McSharry a
Smith @1#, who introduced an improved method over sta
dard least-square fits to estimate the structural parameter
low-dimensional deterministically chaotic system~the logis-
tic map!. We discuss the caveats underlying this problem.
suggest as well a ‘‘piecewise’’ likelihood method~called the
segmentation method! that in fact is a simple modified ver
sion of the multiple shooting method proposed in Re
@2–4#. Our conclusion stresses the inherent difficulties in f
mulating a bona fide statistical theory of structural parame
estimations for noisy deterministic chaos.

*Electronic address: sornette@moho.ess.ucla.edu
1063-651X/2004/69~3!/036122~12!/$22.50 69 0361
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I. DEFINITION AND NATURE OF THE PROBLEM

Let us consider the supposedly simple problem cons
ered by McSharry and Smith@1#, in which one measures th
samples1 , . . . ,sN with

si5xi1h i , ~1!

where the underlying dynamical one-dimensional discrete
currence equation

xi 115F~xi ,a![12axi
2 ~2!

is known and theh i ’s are GaussianN(0,e) independent and
identically distributed~i.i.d.! random variables with zero
mean and standard deviatione. The problem is to determine
the model parametera from the measurementss1 , . . . ,sN ,
knowing that Eq.~2! is the true dynamics.

At first sight, this problem looks like a statistical estim
tion of an unknown structural parameter, given observatio
data. Thus, it seems that such standard statistical approa
the maximum likelihood method can be used for this p
pose. However, strictly speaking, it is not so. Indeed,
likelihood functionL(a,x1us1 , . . . ,sN) reads

ln L~a,x1us1 , . . . ,sN!

}2N ln~e!2
1

2e2(
i

@si2F ( i )~x1 ,a!#2, ~3!
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whereF ( i )(x1 ,a) is the i th iteration of the logistic map~2!
with parametera and initial valuex1. The key point of dif-
ficulty is that thei th iterationF ( i )(x1 ,a) depends oni, i.e., it
is nonstationaryalthough the dynamical system~2! has an
invariant measurem(x). For nonstationary dependence
the partial likelihood functionsLi(uusi) on i, special addi-
tional ~sufficient! conditions discussed below should be fu
filled guaranteeing optimal asymptotical properties of ma
mum likelihood estimates~MLE!, such as consistency
asymptotical normality, efficiency. It should be stressed t
no verification of these sufficient conditions has appeared
far in the literature devoted to this problem. Thus, appli
tion of the maximum likelihood method to unstable nonli
ear systems distorted by noise has no mathematical gro
so far. Then, widely used numerical simulations of examp
are not sufficient to consider suggested methods as consi
and should be complemented with proofs of results show
under what conditions the ML or Bayesian methods contin
to apply to nonstationary time series like Eq.~1!.

A first taste of the difficulty of the problem is given by a
analysis of the behavior of the ‘‘one-step least-squares~LS!
estimation’’ and of the ‘‘total least-squares’’ method, given
the Appendix. The Appendix shows that least-squares m
ods are biased and should be corrected before compa
these to other methods, as done in Ref.@1#. In particular, the
Appendix shows that it wasa priori unfair or inappropriate
to compare any estimate obtained with a given method~such
as the one advocated by McSharry and Smith@1#! to uncor-
rected ML estimates due to the nonstationarity of the fu
tion; the appropriate corrections can be obtained from
standard statistical theory of confluence analysis@6–8#.

We present a brief synthesis of known facts on the st
dard ML theory in the stationary case~for sample of i.i.d.
random values! and its generalization to the nonstationa
case. We expose these questions in a qualitative nons
manner to communicate with less-mathematically mind
readers.

II. ON MAXIMUM LIKELIHOOD THEORY

A. The stationary case

Suppose that the probability density~PD! depends
on a ~multivariate in the general case! parameteru. Sup-
pose further that that the observed samples1 , . . . ,sN
is constituted by random values obeying the PDf (xuu)
with a true parameter valueu0. Then, the derivative of
the logarithm of the likelihood functionL(uus1 , . . . ,sN)
5 f (s1uu)• . . . u f (sNuu) can be expanded in the vicinity o
u0 as follows:

1

N

] ln L~u!

]u
>B01B1~u2u0!1

1

2
B2~u2u0!2, ~4!

where

B05
1

N (
i 51

N
] ln f ~si uu!

]u U
u5u0

, ~5!
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B15
1

N (
i 51

N
]2 ln f ~si uu!

]u2 U
u5u0

, ~6!

B25
1

N (
i 51

N
]3 ln f ~si uu!

]u3 U
u5u0

. ~7!

Under some regularity conditions imposed on the PDf (xuu)
~see exact formulation in Ref.@9#!, it can be shown that
random valueB0 converges in probability to zero~which is
its expectation!, the random valueB1 converges in probabil-
ity to some negative value2I ,0, and the random valueB2
converges to some finite valueC, asN→`. Thus, takingu
sufficiently close tou0, we can make the third term in Eq
~4! much smaller in absolute value thanB1, whereas the first
term in Eq.~4! can be made sufficiently small ifN is suffi-
ciently large. It follows that the likelihood equation

] ln L~u!

]u
50 ~8!

has a rootu* ~called the maximum likelihood estimate! in an
arbitrary small vicinity of the true parameter valueu0, which
is to say that a consistent solution of the likelihood equat
exists. In accordance with the law of the large numbers,
random valueB1 converges to the expectation

EF ]2 ln f ~si uu!

]u2 U
u5u0

G52EF ] ln f ~si uu!

]u U
u5u0

G 2

, ~9!

the last equality following from the regularity condition
guaranteeing the possibility to differentiate under integr
including the PD. The positive expectations

I i~u!5EF ] ln f ~si uu!

]u U
u5u0

G 2

5I ~u! ~10!

are called partial Fisher’s amounts of information. We s
that the cumulative Fisher’s amount of information

JN~u!5(
i 51

N

I i~u!5NI~u! ~11!

grows linearly withN. It follows from the central limit theo-
rem that the random variable

N1/2B05N21/2(
i 51

N
] ln f ~si uu!

]u U
u5u0

~12!

converges in probability to a Gaussian random variable w
zero mean and variance 1/I (u). For regular probability den-
sities, the convergence ofN1/2 B0 to some Gaussian random
variable holds true not only for the true parameter valueu0
but for other valuesu in the 1/N1/2 vicinity of the true value,
in other words, in the 1/JN(u) vicinity of the true value. This
last property is called local asymptotic normality~LAN ! of
the PD in question. It is very important, and all generaliz
2-2
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tions of maximum likelihood methods for nonstationa
cases are based on the LAN property.

B. The nonstationary case

In the nonstationary case, the role of the normalizing f
tor is played by the cumulative Fisher’s informationJN . But
unlike the stationary case,JN can grow nonlinearly. We refe
to Theorem 4 of Ref.@9# giving sufficient conditions for
consistency, asymptotical normality and efficiency of ML
for nonstationary case. Sufficient conditions should provi
roughly speaking, following three main properties:

~i! Unlimited growth of the cumulative Fisher’s informa
tion with N: JN→`, asN→`.

~ii ! Local convergence of the derivative of the likelihoo
~12! to a Gaussian law~LAN !.

~iii ! Relative smallness of the third term in the likelihoo
expansion~4!.

There are some other additional conditions but they
not so evident and explicit~see Ref.@9# for an exact formu-
lation!. In the following, we restrict the discussion to th
particular case of observations representing nonstatio
signalsxi(u) on a noisy background~1! ~additive noise!.

In addition to the signal generated by the logistic map~2!,
it is useful to compare with two other examples serving
benchmarks:

~i! The standard harmonic map with unknown frequenca

xk~a!5sin~ak!. ~13!

~ii ! The sine signal with exponentially nonlinear fr
quency

xk~a!5sin@exp~ak!#. ~14!

The parametera in both cases is taken to belong to a co
pact parametric space on the real axis. The signal~14! has an
important property in common with the logistic map, name
it is exponentially sensitive to parameter variations~see Refs.
@10–12# for an early related discussion on the sensitive
pendence on parameters!.

Figure 1 shows the log-likelihood as a function ofa for
the map~14!. It looks like a Brownian trajectory. A simila
effect is observed for the logistic map. Figure 2 shows
log-likelihood obtained for the logistic map as a function
the structural parametera, for a trajectory of 50 data point
generated witha51.85 and a noise standard deviation of 0
We have fixedx150.3 to a known value, thus deliberate
facilitating the estimation problem. The log-likelihood h
been sampled with steps ina equal to 1027. Rather than the
smooth function generally obtained in standard ML pro
lems, as well as for the generalization~13! involving the
estimation of the frequency of a harmonic oscillation in t
presence of Gaussian noise, we observe that the
likelihood function for the logistic map is like a white nois

From the similarity of these two figures, one can hope t
the MLE problem for these two cases are similar. But, unl
the situation for the logistic map, the cumulative Fishe
information and other characteristics can be evaluated
lytically for the signal~14!. We now use Theorem 4 of Re
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@9# giving sufficient conditions for consistency, asymptotic
normality and efficiency of MLE for nonstationary cases
check if they are fulfilled. Among the four conditions of th
theorem, we take for checking the following two„see Eqs.
~4.11! and ~4.12! in Chap. 3, Sec. 4, Theorem 4.2 of Re
@9#…:

Condition 1: supaH U~a,N!

@JN~a!#2J→0, N→`, ~15!

Condition 2:
supa$@JN~a!#2%

Infa$@JN~a!#2%
,`, N→`, ~16!

where the cumulative Fisher’s information for the sum of t
signal plus noise equals

FIG. 1. Log-likelihood as a function ofa for the map~14!, for a
trajectory ofN550 data points generated witha50.4 and a noise
standard deviation of 0.2.

FIG. 2. Log-likelihood obtained for the logistic map as a fun
tion of the structural parametera, for a trajectory ofN550 data
points generated witha51.85 and a noise standard deviation
0.2. The initial value is fixed equal tox150.3.
2-3
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JN~a!5(
i 51

N S ]xi

]a D 2

, ~17!

and

UN~a!5(
i 51

N S ]xi

]a D 4

. ~18!

Supremum and infimum in Eqs.~15! and~16! are taken over
an open bounded convex set of the parameter space. Loo
speaking, condition~16! provides the possibility of normal
izing the first derivative of the log-likelihood@the first term
in the right-hand side of Eq.~4!# in a vicinity ua2a0u,d of
the true parameter valuea0 by the square root of the Fishe
information JN(a0), so that it can converge to a standa
Gaussian random variable.

It can be shown that Eqs.~15! and~16! are fulfilled for the
standard harmonic map~13! ~see p. 267 in Ref.@9#!, with

JN~a!;N3 and UN~a!;N5. ~19!

The cumulative Fisher’s informationJN(a) grow in this case
asN3 unlike the standard case of i.i.d. where it grows asN.
As a consequence, the standard deviation of the limit Ga
ian distribution of the MLE decreases as 1/N3/2 instead of the
standard 1/N1/2.

For the sine exponential~14!, we have

JN~a!;N2e2aN and UN~a!;N4e4aN, ~20!

leading to the violation of conditions, Eqs.~15! and~16!. Of
course, the violation of sufficient conditions does not au
matically imply that the MLE are inconsistent. But still, the
is no mathematical proof of their consistency, and one
suspect that the MLE of parametera is inconsistent~see
below!.

For the logistic map~2!, we cannot explicitly put down
the derivatives of the signalxk(a,x1) and are not able to
check conditions~15! and ~16! ~and other conditions of the
Theorem 4 mentioned above! analytically. Instead, we are
forced to use numerical experiments to explore the con
tency and other useful properties of ML estimates. Of cou
the numerical experiments~computer simulations! cannot
provide complete evidence confirming such or such as
tion. There is no guarantee that under different param
values, sample sizes, noise distribution, accuracy of com
tations, etc., the results of numerical experiments will co
firm earlier conclusions. But still, such experiments are u
ful research tools for studying nonlinear dynamics, a
sometimes they are quite illustrative and informative. W
thus tried to evaluate numerically the cumulative Fisher
formation for the logistic map, using numerical experime
in which the standard deviation of the noise was taken eq
to 1. We estimated numerically the following elements of t
Fisher information matrixJ:

J5S J11 J12

J21 J22
D ,
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where

J115(
i 51

N

~]xi /]a!2, ~21!

J125J215(
i 51

N

~]xi /]a!~]xi /]x1!, ~22!

J225(
i 51

N

~]xi /]x1!2. ~23!

We have takena51.85 andx150.3. The increments for the
evaluation of derivatives were taken equal to 1029 for
sample sizesN55 –15, and equal to 10212 for N520–30.
The accuracy of the computation of the derivatives was c
trolled by decreasing the increments by a factor of 2 a
checking that we get the same values to a precision w
three figures.

Figure 3 shows the exponential growth of the diago
elements of the Fisher matrix~with a slight nonmonotonicity
at N520) as a function ofN. It turned out that the Fishe
matrix becomes more and more degenerate with growingN,
as shown in Fig. 4 which plots the ratio of smallest eige
value l1 of the Fisher matrix to its largest valuel2. This
ratio l1 /l2 decreases exponentially which leads to a deg
eracy of the inverse matrixB5J21. Similar effect were dis-
covered by Horbelt@2#, but only qualitatively without its
explanation based on the Fisher information. In stand
regular situations, the matrixB in the limit N→` gives the
covariance matrix of the limit two-dimensional Gaussian d
tribution of ML estimates. For the logistic map, as w
pointed out above, there is no theorem justifying the use oB
as a measure of the standard deviations of the estimated
rameters. Nevertheless, we shall useAB(1,1) andAB(2,2),
shown in Fig. 5, as the ‘‘standard deviations’’ of the es
mates ofa andx1 if the use ofB was justified. These ‘‘stan-
dard deviations’’ decrease approximately as 1/N1.6, which

FIG. 3. Exponential growth of the cumulative Fisher inform
tion J11 as a function ofN for the logistic map witha51.85 and
x150.3.
2-4
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differs somewhat from the dependence;1/N given by Hor-
belt @2#. It should be noted that, if one of the two paramet
a,x1 was known then from the exponential growth of t
Fisher partial information coefficientsJ11,J22, the ‘‘standard
deviation’’ for the remaining estimated parameter would d
crease exponentially, in agreement with the numerical t
performed by Horbelt@2#. These results allow us to pinpoin
the origin of the much slower decrease of the ‘‘standard
viations’’ for the estimation of two parameters as being d
to the growing degeneracy of the Fisher matrix (B matrix!.
Figure 6 confirms this explanation by plotting 12r, wherer
is the ‘‘coefficient of correlation’’ calculated from the matri
B as a function ofN. 12r is found to decrease expone
tially, reflecting a stronger and stronger correlation betwe
the estimations ofa andx1 asN increases.

FIG. 4. Ratio of smallest eigenvaluel1 of the Fisher matrix to
its largest valuel2 for the logistic map witha51.85 andx1

50.3.

FIG. 5. Pseudo ‘‘standard deviations’’AB(1,1) of the estimate
of a for the logistic map witha51.85 andx150.3.
03612
s

-
ts

-
e

n

III. A ‘‘PIECEWISE’’ MAXIMUM LIKELIHOOD
APPROACH IN TERMS OF „a,x1…

A. Constraints due to sensitive dependence on the initial value
x1 and on the parametera

The majority of the conclusions drawn in Ref
@1–5,13,14!# are based on numerical experiments. But,
many cases, the information on these experiments is
complete. Therefore, we suggest to provide the follow
standard information~which can be debated! for each nu-
merical experiment:

~i! Sample size.
~ii ! Parameter set~range, grid step, separately for ea

parameter!.
~iii ! Noise distribution.
~iv! Number of simulations, or bootstrap number~if any!.
~v! Accuracy of the computation.
~vi! Additional useful relevant information.
We feel that, without such information, it is difficult to

judge the meaning of the corresponding numerical exp
ment. Other forms of the simulation information are qu
possible.

In this spirit, we have performed a series of numeric
experiments with the logistic map on the sensitivity of th
map to variations of parameters (a,x1). We have takena
51.85 andx150.3 as the reference values and have p
turbed them by random noise uniformly distributed
the interval @2d,1d#, d taking the values 1023;1027;
10211;10215. The accuracy of the computer computatio
was 10215. We generated 1000 simulations for eachd and
for each sample sizeN, whereN was varied fromN52 up to
N5100. The maximum absolute deviation between the p
turbed and reference trajectories is found to increase w
disturbed (a,x1). The results are shown in Fig. 7, whic
show that small initial deviations increase exponentially
that deviations of the order 10215 ~corresponding to our com
puter accuracy! leads to a divergence of order 1 after abo
80 iterations. An approximate empirical formula describi
the exponential growth ofe(n) shown in Fig. 7 is

FIG. 6. 12r, wherer is the ‘‘coefficient of correlation’’ calcu-
lated from the matrixB, as a function of the sample sizeN for the
logistic map witha51.85 andx150.3.
2-5
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e~n!5e~1!3100.2N21. ~24!

Several other parameter values were tried for (a,x1) leading
to dependencies quite similar to Eq.~24!. If we accept that
Eq. ~24! is approximately true for all parameter values, th
it means that we cannot use samples with sizeN.70 for
discriminating signals when the available computer accur
is 10215. Using double precision shifts out this limit ver
little as seen from Eq.~24!. As we are going to see, such hig
accuracy (10215) is needed for computing the logistic ma
likelihood. Thus, to speak about consistency of ML~or other!
estimates solely on the basis of numerical experiments,
is often done, is very dangerous. We know that ML estima
for nonlinear problems are biased for small samples. In
case, the bias forN570 can be small~for high signal-over-
noise ratio! but is nevertheless finite. Some modifications
the ML method such as multiple shooting@2–5# or the seg-
mentation method we propose here amount to use
samples of moderate size taken as sequential segments
initial sample. We can affirm that such moderate size sho
not be more than 70 and, in fact, much less due to some o
reasons, perhaps, no more than 25–30. Larger subsam
would be used inefficiently. Further combination of segme
may not eliminate the finite bias. One can suspect that s
finite bias is retained in these modifications and thus, th
modifications are not consistent, in contradiction with wh
has been claimed in the literature. Of course, this is onl
suspicion and not a strict proof of inconsistency, but in a
sence of strict proof of consistency, it has its own right
existence and is justified by the elements given above.

Let us now consider the MLE of (a,x1) for the logistic
map, which requires to minimize the sum

(
i

@si2F ( i )~x1 ,a!#2, ~25!

which looks superficially as a standard nonlinear least-squ
sum. There is however one very important distinction, as

FIG. 7. Maximum absolute deviatione(n) between the per-
turbed and reference trajectories as a function of sample sizeN for
different amplituded of the initial deviation of (a,x1) with respect
to the reference valuesa51.85 andx150.3 for the logistic map.
03612
y

it
s
r

f

b-
the
ld
er
les
s
ch
se
t
a
-
r

re
e

already pointed out above: the nonlinear function depends
the indexi whereas, in the standard least-square method,
has a sum of the type

(
i

@si2F~xi ,a!#2, ~26!

where thex1 , . . . ,xN are assumed to be known. The cruc
difference between Eq.~25! and Eq. ~26! is that, in the
former, the mean value ofsi is expressed in terms of a func
tion which is dependent on the indexi, with sensitive depen-
dence on the initial conditions. As we noted above, this le
to an exponential growth of the cumulative Fisher inform
tion @this was verified analytically for the sine exponent
map~14! and numerically for the logistic map#. Although the
growth of the cumulative Fisher information is, genera
speaking, useful for estimating the parameters~the faster the
growth, the smaller is the variance of the limit distribution
ML estimates!, such an exponential flow of information fo
the logistic map turns out to be too much to ‘‘be digested
estimation algorithms.’’ Figure 2 shows the log-likelihood
a function of a for the map~14! with true parametersa
51.85 andx150.3, noise standard deviation 0.2, withN
550 with a sampling interval ofa equal to 1027.

Figure 2 gives a sense of the nature of the problem i
pictorial way. Rather than the smooth function generally o
tained in standard ML problems, as well as for the sine h
monic map~13!, we observe that the log-likelihood functio
for the logistic map is like a white noise. Our tests show th
if one wishes to use a grid method to search the maximum
the likelihood, one has to take a sampling step ina which
decreases exponentially with the sample sizeN as

Da51020.2N. ~27!

This is nothing but the inverse of the dependence withN of
the average distance between two trajectories with slig
different values ofa reported in Eq.~24!. For N570, this
givesDa510214, which reaches the precision limits of ou
computer. It is clear that Eq.~27! prevents us from using
time series of sizen570 or larger. In addition, if the param
eterx1 is unknown~which is the real situation!, then the grid
is two dimensional, which worsens considerably the com
tation problem. In Fig. 2, the true valuea51.85 is the maxi-
mum of the likelihood function. But this is no more nece
sarily true in a two-dimensional situation wherex1 is
unknown. To account for this fact, we shifted the (a,x1) grid
in our ‘‘piecewise’’ ML method for each simulated trajector
by a random two-dimensional value distributed uniform
over the grid mesh. Thus, the true parameter values w
so-to-say ‘‘distributed’’ uniformly over the unit mesh, whic
is more realistic than their coincidence with grid axes res
ing in a high likelihood value. Note also that any local sear
for a maximum will be trapped in local maxima. Even im
proved nonlocal searches such as simulated annealing o
netic algorithms ~which are not exhaustive as the gr
method! may be trapped far from the true value by the hie
archy of height structures visible in Fig. 2. A natural id
would be to attempt to smooth the likelihood function overa.
2-6
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A direct smoothing approach would however require that
likelihood be calculated on a dense grid, which brings
back to square one. Any other smoothing method should
strictly justified analytically, otherwise one faces the risk
unexpected surprise arising from the exponential instab
of the logistic map.

The lack of a rigorous theoretical basis should not prev
us from using the ML method, especially since other so
tions previously proposed in the literature turns out to
controversial. But some additional precaution must
pointed out. The exponential sensitivity to variations of t
initial value x1 and of a of the logistic map is actually the
more stringent limiting factor for the usable sizeN of time
series. For the parametersa for which the logistic map ex-
hibits the phenomenon of sensitivity upon the parame
@10#, the direct minimization of Eq.~25! is not feasible di-
rectly even for time series as short atn570.

B. Addressing the sensitivity to small variations inx1 and a:
multiple shooting versus segmentation„‘‘piecewise’’…

The following remarks on the parametrization of the s
nal of the logistic mapxi 115F ( i )(x1 ,a) are helpful to mo-
tivate our proposed solution. Formally, this parametrizat
using two parameters (x1 ,a) is the most parsimonious. Bu
as we saw above, it assumes unlimited accuracy of all rel
computations and is not robust, not realistic and practic
useless. Instead, we can look upon a trajectory of the log
map as a randomlike function forgetting its initial conditio
after some~not quite explicitly defined! time interval ofK
iterations. Thus, if we have a realization of lengthN, we
could look at it as if consisting ofm5N/K different subre-
alizations of lengthK. Each subrealization, in addition to
common parametera, contains its own parameter corre
sponding to its initial valuexK j 11, for j 51, . . . ,m21. One
can consider these initial values as unknown parameter
addition to (x1 ,a). The corresponding parametrization of th
signal of the logistic map by the set of paramete
a,x1 ,xK11 , . . . ,xK(m21)11 is now robust. This robust pa
rametrization has a very characteristic feature: the numbe
parameters increases with the sample sizeN: as we are going
to see, this property has an important consequence for
ML estimation. This leads to the natural idea of cutting t
sample (s1 , . . . ,sN) into K portions of some sizeK, and to
treat each portion separately. If we minimize the total sum
the residuals

(
i 51

K

@si2F ( i )~a,x1!#21 (
i 5K11

2K

@si2F ( i )~a,xK11!#21•••

1 (
i 5(m21)K11

mK

@si2F ( i )~a,xK(m21)11!#2 ~28!

over the parametersa,x1 ,xK11 , . . . ,xK(m21)11, we arrive at
a scheme similar to multiple shooting~see Refs.@2–5#!. It
should be noted that, in this scheme, the parametera is kept
the same in all terms of the sum~28!, whereas the initial
valuesxK j 11 are fitted separately in each term. In most of t
implementation of Refs.@2–5#, the constraint of continuity
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of model trajectory is added. Thus, initial conditions for
model on different segments become mutually depend
variables and onlyx1 remains a free parameter. In this sen
multiple shooting resembles the shadowing technique
Judd@14# ~the difference being that Judd does not impose
condition of minimal square distance between the model
the observed time series!. In other instances, the authors
Refs. @2–4# also use different segments with independe
initial conditions applying multiple shooting inside each se
ment separately@5#.

Here, we suggest another version consisting of fitt
separately the parameters in each subinterval. In our ‘‘s
mentation fitting’’ scheme, the parametera is allowed to take
different values in different subintervals. Our segmentat
fitting scheme treats each subinterval absolutely indep
dently of other intervals, and the resultinga estimates are
averaged.

It is difficult to decidea priori what version of these two
methods gives the most efficient estimation of the param
a. We are going to show several examples in which the s
mentation fitting method results in smaller sample me
square deviations of thea estimates. However, we do no
exclude the possibility that there are situations depending
the choice of the sample sizeN, the sizeK chosen to partition
the time series intom5N/K subseries, and the noise levele,
for which the multiple shooting method has a smaller sam
mean-square deviation. We think that while these two me
ods have probably comparable efficiency, the segmenta
fitting method is somewhat simpler and has smaller b
Both of them may be inconsistent asN→`, or differently
worded, their consistency has not been proved analytica
although the bias can be very small ifN is large and the noise
level is small. Advocates of the multiple shooting meth
often assert that their method is unbiased asN→`, referring
to asymptotical consistency of ML estimates, and to ar
ments of type: ‘‘Multiple shooting makes use of all availab
information in a robust, reasonable way.’’ As we not
above, there is no strict mathematical ground for such a
mations. We showed that robust parametrization leads to
limited growth of the number of fitted parameters. This
turn creates a situation where ML estimates can be bia
We give a simple example of such inconsistency of ML e
timates in the Appendix.

C. Practical implementation and tests
of the ‘‘piecewise’’ method

Let us cut the samples1 , . . . ,sN into n1 portions of size
no more thann2520, and treat each portion separately.
we said, this amounts to reestimating a different initial co
dition for each such subseries, which is a natural step s
the sensitivity upon initial conditions amounts to losing t
information on the specific value of the initial condition.

Our numerical tests show that our MLE works well b
considering subseries of size in the rangen254 –25~for the
true value ofa equal to the value 1.85 considered by M
Sharry and Smith@1# that we take as our benchmark for th
sake of comparison!. For larger samples~say,N5100), we
recommend to cut this sample inton1 subsamples of size
2-7
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TABLE I. Comparison of sample MSE~mean-square error with respect to true valuea51.85) of a
estimates obtained by two methods: multiple shooting and ‘‘piecewise’’ ML; initial valuex150.3; number of
simulationsm5100.

Multiple ‘‘Piecewise’’
shooting ML method

N n1 n2 Noise std a-mesh x1-mesh MSE MSE

14 7 2 0.1 0.005 0.005 0.086 0.090
35 7 5 0.1 0.005 0.005 0.058 0.050
70 7 10 0.1 0.0025 0.0025 0.040 0.039
40 20 2 0.1 0.0025 0.0025 0.051 0.035
60 20 3 0.1 0.0025 0.0025 0.042 0.027
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n254 –25, and treat them separately, and then to average
resultingn1 a estimates. In order to determine the optim
value ofn1 for a fixedN ~sayN5100) and for the valuea
51.85 investigated here, we calculate the standard devia
a over then1 subsamples as a function ofn1. We find that,
basically independently of the noise levele, the pair n1
525,n254 gives the smallest standard deviationa.

We have implemented this approach and compared it
with the shooting method in Table I. One can observe t
the two methods give comparable mean-square errors, w
slight advantage to the ‘‘piecewise’’ ML for largerN. We also
observe in general~not shown! that the multiple shooting
method has a larger bias than the ‘‘piece-wise’’ ML.

We now turn to the comparison between the ‘‘piecewis
ML and the method proposed by McSharry and Smith@1#.

IV. ML VERSION OF McSHARRY AND SMITH
AND COMPARISONS

The main result of McSharry and Smith’s paper@1# con-
sists in their formulas~13! and ~14! for their proposed ML
cost function. Their idea is to substitute in the ML cost fun
tion the unknown invariant measurema(x) of the dynamical
system~2!, for a given value of the parametera, for what
should be a realization of the latent variablesxi ’s. Note that
a should be varied in order to determine the maximum lik
lihood. In practice, the integral over the unknown invaria
measurema(x) is replaced by a sum over a model trajecto
~which can be calculated since the model is assumed to
known! of length t@N. Unfortunately, this most importan
step is not confirmed by any numerical results~see below!.

Before continuing, let us note that there is a mistake in
probability density function PDF and likelihood given b
their Eqs.~7!–~9!. Using the intuition that pairs (si ,si 11)
should be used in their Eqs.~5! and ~6! to track the deter-
ministic relation betweenxi andxi 115F(xi ,a), we see that
a single latent variablexi is associated with each pa
(si ,si 11) since si is compared withxi and si 11 with
F(xi ,a). Thus, eachxi is used only once when scanning a
possible pairs (si ,si 11), for i 51, . . . ,N21 and in their ML
cost function~13! and ~14!. Actually, the correct likelihood
should use only once eachobservedrandom variablesi , not
the latent variablexi . Therefore, using pairs (si ,si 11), Mc-
Sharry and Smith take into account eachsi ,i 52, . . . ,N21
twice, and the end valuess1 ,sN once. ForN@2, their ex-
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pression~7! is approximately equals~up to the end terms! to
the square of the correct likelihood. Taking the logarithm
their Eq. ~13! gives approximately twice the correct likel
hood, which gives almost the same estimate as the e
likelihood.

While this mistake has no serious consequences for
numerical accuracy of their calculation for long time ser
N@2, it illustrates the difference between their constructi
of the likelihood and our direct approach presented in
preceding section. By writing the conditional likelihood for
pair (si ,si 11) under a latent variablexi , and by averaging
this conditional likelihood weighted by the invariant measu
m(xua), McSharry and Smith suggest that, by doing so, th
incorporate additional information on the system in questi
If we had a usual probability space, then such averag
would provide the unconditional likelihood of the pa
(si ,si 11) but, for deterministically chaotic time series, th
exact meaning of this averaging is not clear. Another qu
tionable step of McSharry and Smith is to multiply the
pairwise likelihoods as if the pairs (si ,si 11) were indepen-
dent. If this was so, this would indeed give the unconditio
likelihood for the data samples1 , . . . ,sN . McSharry and
Smith avoid the maximization with respect tox1 in their
likelihood ~13! and~14! and replace it by an averaging ove
a proxy of the invariant measure. It is doubtful that such
step is warranted, not speaking of optimality, and we c
hope that our approach would lead to a more efficient e
mate ofa.

We now compare our ‘‘piecewise’’ maximum likelihoo
approach in terms of (a,x1) proposed in Sec. III with the ML
method of McSharry and Smith using numerical tests.
consider 1000 time series withN5100 data points and sub
divide each of them inton1525 subseries ofn254 data
points. We fix the truea equal to 1.85 as in Ref.@1# and study
noises with standard deviations equal to 0.5 and 1.0. Tab
shows a significant improvement offered by our ‘‘piecewis
ML method over the average ML of McSharry and Smith,
least for the set of parameters studied here. It is not poss
to guarantee that this will be the case for all possible para
eter values but we believe our method cannot be worse
the average ML of McSharry and Smith. A difficulty tha
should be mentioned is that the chaotic nature of the dyn
ics and in particular the sensitivity of the invariant measu
with respect to the control parametera is reflected in an ugly
looking log-likelihood landscape shown in Fig. 8, wit
2-8
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TABLE II. Comparison between the ML method of McSharry and Smith@1# and our ‘‘piecewise’’ ML
method described in Sec. III over 1000 realizations of the system~2! with true valuea51.85 giving 1000
time series of lengthN5100, each of them decorated with Gaussian noise with two different stan
deviations~SD! (0.5 and 1).q1 andq2 are the sample quantiles at the 2.5% and 97.5% probability leve
thatq22q1 gives the width of the 95% confidence intervals. Our ‘‘piecewise’’ ML method provides us
an estimationê of the standard deviation of the noise given in the last column.

Noise Mean~a! SD ~a! q1 q2 q22q1 ê

SD 0.5 Ref.@1# 1.816 0.0714 1.630 1.925 0.295
‘‘piecewise’’ ML 1.841 0.0390 1.762 1.913 0.151 0.459

SD 1 Ref.@1# 1.764 0.123 1.510 1.975 0.465
‘‘piecewise’’ ML 1.885 0.0467 1.781 1.959 0.178 0.766
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many competing valleys. Standard numerical methods
gradient or simplex are unapplicable. We have used a
tematic 2D grid search. Other methods in the field of co
putational intelligence, such as stimulated annealing and
netic algorithms, could also be used. The sensitivity of
invariant measure with respect to the control parametea
means that the invariant distribution can bifurcate from
almost uniform distribution on the interval@2a,1# to a dis-
tribution consisting of threed functions~this happens around
a'1.75).

In addition to performing better, our ‘‘piece-wise’’ ML
approach does not depend on the noise level, in contrast
the ML cost function~13! and ~14! proposed by McSharry
and Smith@1#. This is an important advantage when the tr
level of noise is not known~noise error!. Our method is
insensitive to such noise error while we have found examp
where the optimal estimation of the structure parametea
with the method of McSharry and Smith is obtained for
value of the noise standard deviation different from the t
value. In general, the true noise level is not known and
method of McSharry and Smith does not apply in such s
ation. Our ‘‘piecewise’’ ML method actually provides us wit

FIG. 8. Contour lines of the ‘‘piecewise’’ log-likelihood give
by expression~3! for a given realization ofN520 data points gen-
erated with a starting valuex150.9, a51.85, and noise standar
deviation equal to 1. The log-likelihood landscape is similar to
two-dimensional Brownian sheet~two-dimensional generalization
of a random walk!.
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an estimationê of the standard deviation of the noise give
in the last column of Table II. These estimates have a sm
bias down~two fitted parameters were taken into accoun!,
which may be due to the fact thatn1 is not sufficiently large
(n1525; n254; N5n1n25100).

V. DISCUSSION OF OTHER APPROACHES

Meyer and Christensen@13# have proposed to replace th
ad hoc construction of the ML cost function of McSharr
and Smith by a Bayesian approach, assuming noninforma
priors for the structural parametera, for the initial valuex1
and for the standard deviation of the noise. Their appro
improves significantly on McSharry and Smith@1# by recog-
nizing the role ofx1 but turns out to be incorrect, as show
by Judd@14#, because their approach amounts to assumin
stochastic model, thus referring to quite another problem

Based on the formulation of Ref.@15#, Judd@14# develops
a formulation which is almost identical to the likelihood~3!
but there are important distinctions. Similarly to us, Ju
introducesx1 but he does not employ it. He prefers to elim
nate the dependency onx1 by averaging this parameter wit
a fiducial distribution~see, e.g., Ref.@8#, Chap. 21, Interval
Estimation, Fiducial Intervals!. Judd incorrectly calls the
method based on his Eqs.~4! and ~5! a ML method. In fact,
his Eqs.~4! and ~5! gives a a hybrid of ML, Bayesian and
so-called fiducial methods. It is a ML method with respect
the structural parametera. It is Bayesian with respect to th
initial value x1. It is fiducial since it does not assume anya
priori density forx1, but uses a prior density functionr(s1
2w) ~using the notation of Ref.@14#! that is in fact a Gauss
ian density of the noise with mean value equal to the
known initial values1. Using such density is equivalent t
weighting a two-parameter likelihood by weights corr
sponding to different values of noise disturbances. Thus,
averaged likelihood~5! in Ref. @14# describes an ensemble o
different noise disturbances of an unknown initial values1.
This provides a~reasonable but not optimal! method of
elimination of the second parameterx1 from the maximiza-
tion procedure. It is neither a pure Bayesian method t
would assume explicitly somea priori density forx1 which
could be arbitrary, and not necessarily equal tor(x12w),
nor a ML method for two unknown parameters as we s
gested above in Sec. III.

In this context in view of the emphasis on Bayesian me
2-9
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ods to solve this problem@13,14#, it is perhaps useful to
stress that the probability theory ruleP$A,B%
5P$AuB%P$B% is often freely called ‘‘the Bayes rule.’’ This
is why the averaging of likelihoods over conditional sta
variables can be called Bayesian approaches, although th
not quite correct since the latent~state! variables are not
random values in the standard meaning of this notion~as it is
assumed by McSharry and Smith!, although the state vari
ables have a limit invariant measure, as we said above.
Bayesian approach assumes that parameters are random
ues. We stressed already that the series of state variable
be considered as a degenerate set of random values tha
determined by one single random variable, namely,x1. What
is more natural? To considerx1 as a random variable with
distribution determined by the invariant measure, or to c
siderx1 as an unknown parameter to be estimated? The
swer, in our opinion, is dictated by consideration of ef
ciency: the different examples that we have explored sug
that the latter is as a rule more efficient~has smaller mean
square error!, at least for some combinations of sample s
N and noise level.

As all the above has shown, the major obstacle is the
of information on the initial valuex1 by the unstable logistic
map beyond some limited number of iterations. We propo
the simple recipe of cutting the time series in short pie
and of averaging the estimations. Judd proposes a shado
method@14#. It is not obvious that this will result in a con
sistent estimation and that this will overcome the intrin
difficulty in treating long realizations~which is a necessary
condition for unbiased estimations!.

In sum, there is no analytical proof of consistency for
the estimation methods discussed until now~including the
suggestions performed by the most convincing work to d
@14# and our ‘‘piecewise’’ ML!. It is useful to analyze the
only method to our knowledge for which one can derive
proof of consistency in the present context, that is,
method of statistical moments.

VI. THE METHOD OF STATISTICAL MOMENTS

The method of statistical moments provides a consis
estimate of the parameters for nonlinear maps with ergo
properties. The method of statistical moments is the uni
theoretically proven consistent estimator among all meth
suggested so far by other authors. Although the moment
timates are known to have little efficiency, they are cons
tent. Consistency of all estimates suggested earlier includ
ours above were confirmed only numerically, which is ve
dangerous for instable nonlinear maps.

We consider four moment of the observed time ser
^s&N , ^s2&N , ^s3&N , and^sisi 11&N , where the brackets stan
for time averaging over some time intervalN. Building on
the knowledge that the series$xi% is ergodic@16# and using
Eqs.~1! and ~2!, we obtain the following relations

^s&N→^x&` , ~29!

^s2&N→^x2&`1e2, ~30!
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:

^s3&N→^x3&`13^x&`e2, ~31!

^sisi 11&N→^x&`2a^x3&` . ~32!

Besides, averaging Eq.~2!, we get

^x&`512a^x2&` . ~33!

This provides us with five limit relations~29!–~33! with five
unknown parameters:a,^x&` , ^x2&` , ^x3&` , ande. Solving
these five relations with respect to the unknown paramet
we get the so-called estimates of the method of moment

â5
^sisi 11&N12^s&N23~^s&N!2

3^s&N^s2&N2^s3&N

, ~34!

^x̂&`5^s&N , ~35!

^x̂2&`5^s2&N2 ê2, ~36!

^x̂3&`5
1

â
@^s&N2^sisi 11&N#, ~37!

ê25
^s3&N2^x3&`

3^s&N
. ~38!

Because of the limit relations~29!–~32! ~which are valid
because of the ergodicity of the time series$xi% @16#!, the
estimates~34!–~38! are consistent ifN→`.

We present in Table III the estimates of the parametea
given by expression~34!. The consistency of the method o
statistical moments is clearly suggested by the numerica

TABLE III. Estimation of the structural parametera by the
method of statistical moments@expression~34!# for the logistic map
xi 11512axi

2 ,a51.85; the observations aresi5xi1h i ;h i is a
Gaussian random variableN(0,e). As in Table II,q1 andq2 are the
sample quantiles at the 2.5% and 97.5% probability level, so
q22q1 gives the width of the 95% confidence intervals. Each e
mate fora and standard deviation~SD! is based on 1000 simulate
samples.

Sample
size

Noise
SD Estimate q1 q2 q22q1

N e (a)6SD

100 0.05 1.876860.0926 1.684 2.000 0.316
1000 0.05 1.854460.0418 1.774 1.936 0.162
10 000 0.05 1.850360.0136 1.824 1.878 0.054
100 000 0.05 1.849960.0044 1.842 1.858 0.016
100 0.1 1.845660.1546 1.499 2.000 0.501
1000 0.1 1.853260.0815 1.693 2.000 0.307
10 000 0.1 1.850560.0279 1.795 1.908 0.113
100 000 0.1 1.849760.0089 1.833 1.867 0.034
100 0.5 1.241160.7331 0 2.000 2.000
1000 0.5 1.690760.3496 0.903 2.000 1.097
10 000 0.5 1.824460.1659 1.467 2.000 0.533
100 000 0.5 1.855460.0741 1.715 2.000 0.285
2-10
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sults, as seen from the bracketing of the true value bya)
6 SD and byq1 and q2. However, as we already pointe
out, the method of statistical moments is rather inefficie
the ratio of its standard deviation fora to that of the ‘‘piece-
wise’’ ML is about 4 forN5100 ande50.1 for instance.

VII. CONCLUDING REMARKS

We have proposed a ‘‘piecewise’’ ML method to estima
the structural parameter of a deterministically chaotic lo
dimensional system~the logistic map!, which adds the initial
value x1 to the structural parameter to be determined.
have compared quantitatively this method with the M
method proposed by McSharry and Smith@1# based on an
averaging over the unknown invariant measure of the
namical system. A key aspect of the implementation of
approach lies in the compromise between the need to u
large number of data points for the ML to decrease a syst
atic bias and the unstable nature of dynamical trajecto
which loses exponentially fast the memory of the initial co
dition. This second aspect prevents using our ‘‘piecewi
ML for systems larger than 10–25 data points. For lar
time series, we have found it convenient to divide them i
subsystems of very small lengths and then to average
their estimations. Numerical tests suggest that this ‘‘pie
wise’’ ML method provides often significantly better es
mates than previously proposed approaches.

The difference between the averaging over the invar
measure and our ‘‘piecewise’’ ML of McSharry and Smith
reminiscent of the distinction between ‘‘annealed’’ vers
‘‘quenched’’ averaging in the statistical physics of rando
systems, such as spin glasses@17,18#. It has indeed been
shown that the correct theory of strongly heterogeneous
dia is obtained by performing the thermal Gibbs-Boltzma
averaging over fixed structural disorder realizations, si
larly to our use of a specific trajectory of the latent variab
xi ’s. In contrast, performing the thermal Gibbs-Boltzma
averaging together with an averaging over different reali
tion of the structural disorder describes another type of ph
ics, which is not that of fixed heterogeneity. This seco
incorrect type of averaging is similar to the averaging of
ML over the invariant measure performed by McSharry a
Smith.

There are several ways to improve our approach. O
simple implementation is to use overlapping running w
dows. Another method is to reestimate the realized trajec
by using the extended Kalman filter method~however, diffi-
culties may arise due to the existence of a maximum in
logistic map!. Using shadowing methods as proposed in R
@14# in our context would also be interesting to investigat

Let us end with a cautionary note. As we just said, the M
approach for two parameters (a,x1) that we suggest her
evidently works only for a limited sample sizeN ~perhaps,
N,25 or so! due to the sensitivity upon initial conditions o
the chaotic logistic map. As is well-known in classical s
tistics, ML estimates have a bias that can be considerab
N is not large~say, N,100 or so!. The ML estimates are
usually only asymptotically unbiased. Thus, forN525 ~and
all the more forN54), ML estimates can exhibit a consid
03612
t:

-

e

-
r
a
-
s

-
’’
r

o
er
-

t

e-
n
i-
s

-
s-
d
e
d

e
-
ry

e
f.

-
if

erable bias. Thus, averaging biased estimates as we prop
may not result in a consistent estimation. Therefore, we c
not assert that our ML method~as well as any other sug
gested methods! is consistent. We can only observe, for pa
ticular combinations of the considered parameters,
numerically determined mean-square error of our sugge
estimates with respect to the true parameter value. We
pleased if these errors are not too high, although our e
mates can be biased~though, with small bias!. But we are not
able to make such bias arbitrarily small by increasing
sample sizeN, due to the instability under the iterations o
the logistic map which leads to a loss of information abo
the initial valuex1. Thus, the situation is rather hopeless f
the establishment of a meaningful statistical theory of e
mation using the continuous theory of classical statistics
such discontinuous objects as the invariant measures of
otic dynamical systems.
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APPENDIX: ONE-STEP AND TOTAL LEAST-SQUARES
ESTIMATIONS

McSharry and Smith noticed that the one-step lea
squares method gives strongly biased results for the est
tion of a @1#. Indeed, the method of estimation of the para
eter a by the one-step least-squares method is evide
inconsistent, since the deviations~of the random variables! to
be minimized in a least-squares sense are

si 112F~si ,a!5xi 111h i 112F~xi1h i ,a!

5h i 1112axih i1ah i
2 , ~A1!

which has nonzero expectation equal toae2. But, the funda-
mental least-squares principle consists in the minimization
deviations with zero mean. There are no least-squa
schemes that would suggest to minimize random deviati
with nonzero mean depending on an unknown parame
Thus, it is not reasonable to include the least-squares me
in any reasonable comparison.

The method called by McSharry and Smith as ‘‘total lea
squares’’~TLS! is applied in situation when the variablesxi
are known only with some errorsh i . This situation is called
in statistics a ‘‘confluence analysis,’’ or ‘‘estimation of
structural relation between two~or more! variables in the
presence of errors on both variables’’@6–8#. In such a situ-
ation of confluence analysis, since thexi ’s are in fact un-
known ~nuisance! parameters whose number grows wi
sample size, there is no guarantee of consistency of the
estimates of the structural parametera.

As an example, let us consider the very simple conflu
scheme:

Yi5Xi1h i , ~A2!
2-11
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Zi5Xi1z i . ~A3!

Suppose we observe a sample ofN pairs (Yi ,Zi),i
51, . . . ,N, where Xi are unknown arbitrary values an
h i ,z i are i.i.d. Gaussian random variables with standard
viation e. The problem consists in estimating the parame
e. Similarly to the situation with Eqs.~1! and ~2! studied in
Ref. @1#, no restrictions are placed on theXi ’s. The likelihood
L(e,X1 , . . . ,XNu(Yi ,Zi),i 51, . . . ,N) is

L~e,X1 , . . . ,XNu~Yi ,Zi !, i 51, . . . ,N!

}e22N expF2~1/2e2!(
i 51

N

~Yi2Xi !
2

2~1/2e2!(
i 51

N

~Zi2Xi !
2G . ~A4!

The MLE X̂i ’s of theXi ’s ~that coincide in this case with th
least-squares estimates! are

X̂i5
Yi1Zi

2
. ~A5!

Inserting Eq.~A5! into Eq. ~A4!, we get

L̂~eu~Yi ,Zi !, i 51, . . . ,N!

}e22N expF2~1/4e2!(
i 51

N

~Yi2Zi !
2G . ~A6!
://
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Thus, the MLE of the parametere obtained from Eq.~A6!
satisfies

e25
1

4N (
i 51

N

~Yi2Zi !
2. ~A7!

Since E@(Yi2Zi)
2#52e2, the estimate~A7! is inconsistent.

A consistent~corrected! estimate is

e25
1

2N (
i 51

N

~Yi2Zi !
2. ~A8!

Thus, we see that the MLE of the structural parametere is
inconsistent due to the increasing number of nuisance par
eters. Thus, the direct use of the least-square~or TLS! in the
confluent situation is not justified, and was not recommen
in any statistical textbook. Instead, standard statistical wo
recommend a ‘‘corrected’’ ML estimates~see, for instance
Refs.@7,8#!.

We should stress in addition that there is a signific
difference between the standard confluent analysis and
problem addressed in Ref.@1#. Confluent analysis deals with
arbitrary unknown~distorted! argumentsxi , whereas in Ref.
@1#, the latent variablesxi are related by the nonlinear ma
~2!. The information on the structure of thexi ’s is not used in
confluence analysis while it can really help in the estimat
procedure as shown in Ref.@1# and in the present work.
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