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We discuss the possibility of applying some standard statistical mettibdsleast-square method, the
maximum likelihood method, and the method of statistical moments for estimation of pargnetdeter-
ministically chaotic low-dimensional dynamic systdthe logistic majp containing an observational noise. A
“segmentation fitting” maximum likelihoodML ) method is suggested to estimate the structural parameter of
the logistic map along with the initial value considered as an additional unknown parameter. The segmen-
tation fitting method, called “piece-wise” ML, is similar in spirit but simpler and has smaller bias than the
“multiple shooting” previously proposed. Comparisons with different previously proposed techniques on
simulated numerical examples give favorable regutdeast, for the investigated combinations of sample size
N and noise level Besides, unlike some suggested techniques, our method does not requireptioei
knowledge of the noise variance. We also clarify the nature of the inherent difficulties in the statistical analysis
of deterministically chaotic time series and the status of previously proposed Bayesian approaches. We note the
trade off between the need of using a large number of data points in the ML analysis to decrease(the bias
guarantee consistency of the estimatiand the unstable nature of dynamical trajectories with exponentially
fast loss of memory of the initial condition. The method of statistical moments for the estimation of the
parameter of the logistic map is discussed. This method seems to be the unique method whose consistency for
deterministically chaotic time series is proved so far theoreticalbf only numerically.
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The problem of characterizing and quantifying a noisy  |. DEFINITION AND NATURE OF THE PROBLEM
nonlinear dynamical chaotic system from a finite realization
qf a time _series of measurements is full of difficultigs. Theered by McSharry and Smift], in which one measures the
first one is that one rarely has the luxury of knowing theSamples . with

. . . . 13+ = = N
underlying dynamics, i.e., one does not in general know the
underlying equations of evolution. Techniques to reconstruct
a parametric representation of the time series then may lead
to so-called model errors. . . . . .

Even in the rare situations where one can ascertain thgyhere the unde_rlylng dynamical one-dimensional discrete re-
the measurements correspond to a known set of equatim%menCe equation
with additive noise, the chaotic nature of the dynamics
makes the estimation of the model parameters from time
series surprisingly difficult. This is true even for low-
dimensional systems, another even rarer instance in naturali§ known and thep;’s are GaussiaiN(0,¢) independent and
occurring time series. identically distributed(i.i.d.) random variables with zero

Here, we revisit the problem proposed by McSharry andnean and standard deviatien The problem is to determine
Smith [1], who introduced an improved method over stan-the model parametea from the measurements, . .. Sy,
dard least-square fits to estimate the structural parameter ofk@owing that Eq.(2) is the true dynamics.
low-dimensional deterministically chaotic systéthe logis- At first sight, this problem looks like a statistical estima-
tic map. We discuss the caveats underlying this problem. Wdion of an unknown structural parameter, given observational
suggest as well a “piecewise” likelihood methdcdalled the  data. Thus, it seems that such standard statistical approach as
segmentation methodhat in fact is a simple modified ver- the maximum likelihood method can be used for this pur-
sion of the multiple shooting method proposed in Refspose. However, strictly speaking, it is not so. Indeed, the

Let us consider the supposedly simple problem consid-

Si=Xj+ 7, (1

Xi+1=F(x;,a)=1—ax’ )

[2—4]. Our conclusion stresses the inherent difficulties in for-likelihood functionL(a,x4|sy, . . . ,sy) reads
mulating a bona fide statistical theory of structural parameter
estimations for noisy deterministic chaos. InL(a,Xq|S1, - - .,SN)

1 )
«—NIn(e)— ==, [ss—FO(x.,a)]1%, (3
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w_hereF(i)(xl,a) is theith iteration of the logistic may2) 1 N 2inf(s|o)

with parametem and initial valuex,. The key point of dif- Bl:ﬁ E 9 , (6)
ficulty is that theith iterationF()(x, ,a) depends om, i.e., it =1 0=0,

is nonstationaryalthough the dynamical systef) has an

invarian'F mt_aas_ureu(x). qu nonstationary depe_ndencg of 1N g Inf(si|6)

the partial likelihood functiond ;(6|s;) on i, special addi- Ba=y ‘21 9 . (7)
tional (sufficiend conditions discussed below should be ful- = 6=16,

filled guaranteeing optimal asymptotical properties of maxi- ) N )
mum_likelihood estimatesMLE), such as consistency, Under some regularity conditions imposed on the fR&} 6)
asymptotical normality, efficiency. It should be stressed thafsee exact formulation in Ref9]), it can be shown that
no verification of these sufficient conditions has appeared sgndom valueB, converges in probability to zeravhich is
far in the literature devoted to this problem. Thus, applicadts expectatiop the random valu®,; converges in probabil-
tion of the maximum likelihood method to unstable nonlin- ity to some negative value | <0, and the random valug,
ear systems distorted by noise has no mathematical grourf@nverges to some finite valu® asN— . Thus, taking¢
so far. Then, widely used numerical simulations of examplesufficiently close tod,, we can make the third term in Eq.
are not sufficient to consider suggested methods as consistédi much smaller in absolute value thBr, whereas the first
and should be complemented with proofs of results showingerm in Eq.(4) can be made sufficiently small N is suffi-
under what conditions the ML or Bayesian methods continugiently large. It follows that the likelihood equation
to apply to nonstationary time series like Ed).

A first taste of the difficulty of the problem is given by an dInL(6) -0
analysis of the behavior of the “one-step least-squatss a6
estimation” and of the “total least-squares” method, given in ) o o
the Appendix. The Appendix shows that least-squares meti1as a oo™ (called the maximum likelihood estimatier an
ods are biased and should be corrected before comparirgjbitrary small vicinity of the true parameter valdg which

®

0=

these to other methods, as done in R&f. In particular, the 1S to say that a consiste_nt solution of the likelihood equation
Appendix shows that it waa priori unfair or inappropriate  €Xists. In accordance with the law of the large numbers, the
to compare any estimate obtained with a given mefiso¢h ~ random valueB; converges to the expectation
e o o e e, ([ #ntislo) |__ Jomtislof ]
ty of the func- E - =_E (9)

tion; the appropriate corrections can be obtained from the a0 9=8 a0 ol
standard statistical theory of confluence analy6is§]. ° °

We present a brief synthesis of known facts on the stanthe last equality following from the regularity conditions
dard ML theory in the stationary cagtor sample of i.i.d. guaranteeing the possibility to differentiate under integrals
random valuesand its generalization to the nonstationary including the PD. The positive expectations
case. We expose these questions in a qualitative nonstrict

manner to communicate with less-mathematically minded dInf(si|) 2
readers. Ii(e)_E{T =1(6) (10
0= 16,
II. ON MAXIMUM LIKELIHOOD THEORY are called partial Fisher's amounts of information. We see

_ that the cumulative Fisher’'s amount of information
A. The stationary case
Suppose that the probability densitfPD) depends .

on a (multivariate in the general cas@arameterd. Sup- ‘]N(a):izl 1i(0)=NI1(6) (12)

pose further that that the observed sampglg ... ,sy

is constituted by random values obeying the P(X|6)  grows linearly withN. It follows from the central limit theo-

with a true parameter valu@,. Then, the derivative of rem that the random variable

the logarithm of the likelihood functiorL(6|s;, ... ,S\) "

=f(s4|6)- ...0f(sy|6) can be expanded in the vicinity of Jlnf(slo

0o as L‘ollows: | N8y = N_mzl %H (12

- 0=16,

19InL(0) 5

N g = BotBu(0— )+ 5Ba(0- 80)°, (4  converges in probability to a Gaussian random variable with
zero mean and variancel {#). For regular probability den-
sities, the convergence &f'? B, to some Gaussian random
variable holds true not only for the true parameter vadye
but for other value® in the 1N vicinity of the true value,

where

18 4n f(si|0) in other words, in the T4(6) vicinity of the true value. This
Bo:N ;1 a0 ' ) last property is palled 'Iocal as:ymptotic normalityAN ) of'
0=t the PD in question. It is very important, and all generaliza-
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tions of maximum likelihood methods for nonstationary 0 ' g (
cases are based on the LAN property. 50 '
B. The nonstationary case —100F L || U 4
In the nonstationary case, the role of the normalizing fac- 150l

tor is played by the cumulative Fisher’s informatidg. But
unlike the stationary caséy can grow nonlinearly. We refer  _»qq
to Theorem 4 of Ref[9] giving sufficient conditions for :
consistency, asymptotical normality and efficiency of MLE  -2508i -} = i ‘ |
for nonstationary case. Sufficient conditions should provide, f
roughly speaking, following three main properties: =3007" T o A 7

(i) Unlimited growth of the cumulative Fisher’s informa- ' ‘ ‘
tion with N: Jy—o, asN— o, —350¢ . : ‘

(i) Local convergence of the derivative of the likelihood _4qq ; i ;

(12) to a Gaussian lawlLAN). 0.5 1 » 15 2
(iii) Relative smallness of the third term in the likelihood K, (a=K Aa; Aa=10""") x10*
expansion4).

FIG. 1. Log-likelihood as a function & for the map(14), for a
?rajectory ofN=50 data points generated with=0.4 and a noise
standard deviation of 0.2.

There are some other additional conditions but they ar
not so evident and explicisee Ref[9] for an exact formu-
lation). In the following, we restrict the discussion to the
particular case of observations representing nonstationa
signalsx;(6) on a noisy backgroun(l) (additive noisg

In addition to the signal generated by the logistic nG2p
it is useful to compare with two other examples serving a
benchmarks:

(i) The standard harmonic map with unknown frequeacy

| giving sufficient conditions for consistency, asymptotical
normality and efficiency of MLE for nonstationary cases to
check if they are fulfilled. Among the four conditions of this
S’[heorem, we take for checking the following twsee Eqgs.
(4.1) and (4.12 in Chap. 3, Sec. 4, Theorem 4.2 of Ref.

[9]):
xg(a)=sin(ak). (13
L U(a,N)
(i) The sine signal with exponentially nonlinear fre- Condition 1: SUQ[[‘J’\‘(a]z]—)O, N— oo, (15)
quency
xi(@)=sin exp(ak)]. (14) Condition 2: RALN@IT g
Info{[In(2)]%}

The parametea in both cases is taken to belong to a com-
pact parametric space on the real axis. The sigh¥lhas an
important property in common with the logistic map, namely,
it is exponentially sensitive to parameter variatiésse Refs.
[10-12 for an early related discussion on the sensitive de- 0
pendence on parametgrs

Figure 1 shows the log-likelihood as a function afor
the map(14). It looks like a Brownian trajectory. A similar
effect is observed for the logistic map. Figure 2 shows the
log-likelihood obtained for the logistic map as a function of
the structural parametex; for a trajectory of 50 data points
generated witla=1.85 and a noise standard deviation of 0.2.
We have fixedx;=0.3 to a known value, thus deliberately
facilitating the estimation problem. The log-likelihood has
been sampled with steps inequal to 107. Rather than the
smooth function generally obtained in standard ML prob-
lems, as well as for the generalizati¢h3) involving the
estimation of the frequency of a harmonic oscillation in the
presence of Gaussian noise, we observe that the log- -69
likelihood function for the logistic map is like a white noise.

From the similarity of these two figures, one can hope that
the MLE problem for these two cases are similar. But, unlike  FIG. 2. Log-likelihood obtained for the logistic map as a func-
the situation for the logistic map, the cumulative Fisher'stion of the structural parametex, for a trajectory ofN=50 data
information and other characteristics can be evaluated angoints generated witta=1.85 and a noise standard deviation of
lytically for the signal(14). We now use Theorem 4 of Ref. 0.2. The initial value is fixed equal to,=0.3.

where the cumulative Fisher’s information for the sum of the
signal plus noise equals

9849 1.8495 1.85 1.8505 1.851
a, sampling rate Aa=1 0~/
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N 9 i 2
=3 |5 a7
and
N faxi\ 4
Un@=2, |72 (18

Supremum and infimum in Eqél5) and(16) are taken over

an open bounded convex set of the parameter space. Loosely;

speaking, conditior{16) provides the possibility of normal-
izing the first derivative of the log-likelihoofthe first term
in the right-hand side of Ed4)] in a vicinity |a—ag| < of
the true parameter valweg, by the square root of the Fisher
information Jy(ag), so that it can converge to a standard
Gaussian random variable.

It can be shown that Eq&l5) and(16) are fulfilled for the
standard harmonic mafi3) (see p. 267 in Ref.9]), with

Jn(a)~N® and Uy(a)~N®. (19

The cumulative Fisher’s informatiaky(a) grow in this case
asN?2 unlike the standard case of i.i.d. where it grows\as

As a consequence, the standard deviation of the limit Gauss-

ian distribution of the MLE decreases ad## instead of the
standard M2,
For the sine exponenti@l4), we have
Jn(@)~N2e?@N and Uy(a)~N4e*N (20)

leading to the violation of conditions, Eq4.5) and(16). Of

PHYSICAL REVIEW B9, 036122 (2004
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FIG. 3. Exponential growth of the cumulative Fisher informa-
tion J;; as a function ofN for the logistic map witha=1.85 and
X]_:O.S.
where

N

Ji= Zl (9x;192)?, (21)
N
J12: J21: Zl ((9Xi /&a)((?xi /(7Xl), (22)
N
J22=Zl (9% 19%1)2. (23)

course, the violation of sufficient conditions does not auto-

matically imply that the MLE are inconsistent. But still, there

We have takerm=1.85 andx,=0.3. The increments for the

is no mathematical proof of their consistency, and one caRyjuation of derivatives were taken equal to~10for

suspect that the MLE of parametaris inconsistent(see
below).

For the logistic map2), we cannot explicitly put down
the derivatives of the signat,(a,x;) and are not able to
check conditiong15) and (16) (and other conditions of the
Theorem 4 mentioned abovenalytically. Instead, we are

sample sizedN=5-15, and equal to 102 for N=20-30.
The accuracy of the computation of the derivatives was con-
trolled by decreasing the increments by a factor of 2 and
checking that we get the same values to a precision with
three figures.

Figure 3 shows the exponential growth of the diagonal

forced to use numerical experiments to explore the consissiements of the Fisher matriwith a slight nonmonotonicity

tency and other useful properties of ML estimates. Of cours
the numerical experiment&computer simulationscannot

€t N=20) as a function ofN. It turned out that the Fisher

matrix becomes more and more degenerate with groning

provide complete evidence confirming such or such asselyg ghown in Fig. 4 which plots the ratio of smallest eigen-
tion. There is no guarantee that under different paramete\;ah“_})\l of the Fisher matrix to its largest value,. This

values, sample sizes, noise distribution, accuracy of compq—aﬂo)\l/)\2

tations, etc., the results of numerical experiments will con

firm earlier conclusions. But still, such experiments are use
ful research tools for studying nonlinear dynamics, ande
sometimes they are quite illustrative and informative. We

thus tried to evaluate numerically the cumulative Fisher in

formation for the logistic map, using numerical experiment;tIibution of ML estimates. For the logistic map, as we

in which the standard deviation of the noise was taken equ

to 1. We estimated numerically the following elements of the

Fisher information matrixJ:

|

‘]ll

le)
I J2)’

decreases exponentially which leads to a degen-
eracy of the inverse matri8=J"1. Similar effect were dis-
covered by Horbel{2], but only qualitatively without its
xplanation based on the Fisher information. In standard
regular situations, the matri® in the limit N—oo gives the

covariance matrix of the limit two-dimensional Gaussian dis-

ointed out above, there is no theorem justifying the us® of
as a measure of the standard deviations of the estimated pa-
rameters. Nevertheless, we shall u&(1,1) andyB(2,2),
shown in Fig. 5, as the “standard deviations” of the esti-
mates ofa andx, if the use ofB was justified. These “stan-
dard deviations” decrease approximately adl% which
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A /A,

; _10

10 ; i ; 10 ; ; i ;
5 10 15 20 25 30 5 10 15 20 25 30
Sample size, N Sample size, N
~ FIG. 4. Ratio of smallest eigenvalug of the Fisher matrix to FIG. 6. 1- p, wherep is the “coefficient of correlation” calcu-
its largest valuen, for the logistic map witha=1.85 andx; |ated from the matrixB, as a function of the sample sid&for the
=0.3. logistic map witha=1.85 andx,=0.3.

. . 1. A “PIECEWISE” MAXIMUM LIKELIHOOD
differs somewhat from the dependened/N given by Hor- APPROACH IN TERMS OF (a,x,)

belt[2]. It should be noted that, if one of the two parameters

a,x; was known then from the exponential growth of the A. Constraints due to sensitive dependence on the initial value
Fisher partial information coefficientl,,J,,, the “standard X1 and on the parametera

deviation” for the remaining estimated parameter would de- The majority of the conclusions drawn in Refs.
crease exponentially, in agreement with the numerical testsl-5,13,14] are based on numerical experiments. But, in
performed by Horbelf2]. These results allow us to pinpoint many cases, the information on these experiments is not
the origin of the much slower decrease of the “standard deeomplete. Therefore, we suggest to provide the following
viations” for the estimation of two parameters as being duestandard informatioriwhich can be debatedor each nu-

to the growing degeneracy of the Fisher matriX ihatrix).  merical experiment:

Figure 6 confirms this explanation by plotting-Jo, wherep (i) Sample size.

is the “coefficient of correlation” calculated from the matrix (i) Parameter setrange, grid step, separately for each
B as a function ofN. 1—p is found to decrease exponen- Parameter

tially, reflecting a stronger and stronger correlation between (iii) Noise distribution. _
the estimations o& andx, asN increases. (iv) Number of simulations, or bootstrap numlggrany).

(v) Accuracy of the computation.

(vi) Additional useful relevant information.

We feel that, without such information, it is difficult to
judge the meaning of the corresponding numerical experi-
ment. Other forms of the simulation information are quite
possible.

In this spirit, we have performed a series of numerical
experiments with the logistic map on the sensitivity of this
map to variations of parameters,k;). We have takera
=1.85 andx;=0.3 as the reference values and have per-
turbed them by random noise uniformly distributed in
the interval [—6,+ 6], & taking the values 1C°;10°7;
107111071 The accuracy of the computer computation
was 10 '°. We generated 1000 simulations for eagtand
for each sample siz¥, whereN was varied fronN=2 up to
N=100. The maximum absolute deviation between the per-
o ; turbed and reference trajectories is found to increase with
08 RO SOROON SN SO : disturbed @,x;). The results are shown in Fig. 7, which
— : show that small initial deviations increase exponentially so
that deviations of the order 16° (corresponding to our com-
puter accuracyleads to a divergence of order 1 after about

FIG. 5. Pseudo “standard deviations/B(1,1) of the estimate 80 iterations. An approximate empirical formula describing
of a for the logistic map witha=1.85 andx;=0.3. the exponential growth oé(n) shown in Fig. 7 is

pry
o
(=]
e
I

oI
o
o
I

1
bl
o

"std"” of a—estimate
o

10
Sample size, N (in log-scale)
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2 T ; ; ; already pointed out above: the nonlinear function depends on
Z o the indexi whereas, in the standard least-square method, one
] Al has a sum of the type
% -4
< > [s—F(x.a)P (26)
¥ -8f i
]
S<T’ -8 where thexq, ... Xy are assumed to be known. The crucial
Q-“O“‘ difference between Eq(25) and Eq.(26) is that, in the
© 12} former, the mean value & is expressed in terms of a func-
X _1a tion which is dependent on the indexwith sensitive depen-
F3 dence on the initial conditions. As we noted above, this leads
g —16p to an exponential growth of the cumulative Fisher informa-

s s s s tion [this was verified analytically for the sine exponential
0 20 oo size N 80 100 map(14) and numerically for the logistic mapAlthough the

P ’ growth of the cumulative Fisher information is, generally

FIG. 7. Maximum absolute deviatioa(n) between the per- Speaking, useful for estimating the parametéhns faster the
turbed and reference trajectories as a function of sampleNsioe ~ growth, the smaller is the variance of the limit distribution of
different amplitudes of the initial deviation of @&,x,) with respect ML estimate$, such an exponential flow of information for
to the reference values=1.85 andx,=0.3 for the logistic map. the logistic map turns out to be too much to “be digested by

estimation algorithms.” Figure 2 shows the log-likelihood as

e(n)=¢e(1)x 10PN 1, (24 a function ofa for the map(14) with true parameters
=1.85 andx;=0.3, noise standard deviation 0.2, wikth
Several other parameter values were tried fox() leading =50 with a sampling interval o& equal to 10°.
to dependencies quite similar to EQ4). If we accept that Figure 2 gives a sense of the nature of the problem in a

Eq. (24) is approximately true for all parameter values, thenpictorial way. Rather than the smooth function generally ob-
it means that we cannot use samples with dize70 for  tained in standard ML problems, as well as for the sine har-
discriminating signals when the available computer accuracynonic map(13), we observe that the log-likelihood function
is 10 1° Using double precision shifts out this limit very for the logistic map is like a white noise. Our tests show that,
little as seen from Eq24). As we are going to see, such high if one wishes to use a grid method to search the maximum of
accuracy (101 is needed for computing the logistic map the likelihood, one has to take a sampling stemiwhich
likelihood. Thus, to speak about consistency of Mk othe) decreases exponentially with the sample $izas
estimates solely on the basis of numerical experiments, as it
is often done, is very dangerous. We know that ML estimates Aa=10"H, (27)
for nonlinear problems are biased for small samples. In our
case, the bias foN=70 can be smal(for high signal-over-  This is nothing but the inverse of the dependence hitbf
noise ratig but is nevertheless finite. Some modifications ofthe average distance between two trajectories with slightly
the ML method such as multiple shootifig—5] or the seg- different values ofa reported in Eq.(24). For N=70, this
mentation method we propose here amount to use sulgivesAa=10 1% which reaches the precision limits of our
samples of moderate size taken as sequential segments of th@mputer. It is clear that Eq27) prevents us from using
initial sample. We can affirm that such moderate size shouldime series of size=70 or larger. In addition, if the param-
not be more than 70 and, in fact, much less due to some otheterx; is unknown(which is the real situationthen the grid
reasons, perhaps, no more than 25-30. Larger subsamplisstwo dimensional, which worsens considerably the compu-
would be used inefficiently. Further combination of segmentgation problem. In Fig. 2, the true valie=1.85 is the maxi-
may not eliminate the finite bias. One can suspect that sucinum of the likelihood function. But this is no more neces-
finite bias is retained in these modifications and thus, thessarily true in a two-dimensional situation whepg is
modifications are not consistent, in contradiction with whatunknown. To account for this fact, we shifted thex;) grid
has been claimed in the literature. Of course, this is only an our “piecewise” ML method for each simulated trajectory
suspicion and not a strict proof of inconsistency, but in abby a random two-dimensional value distributed uniformly
sence of strict proof of consistency, it has its own right forover the grid mesh. Thus, the true parameter values were
existence and is justified by the elements given above. so-to-say “distributed” uniformly over the unit mesh, which
Let us now consider the MLE ofa(x;) for the logistic  is more realistic than their coincidence with grid axes result-

map, which requires to minimize the sum ing in a high likelihood value. Note also that any local search
for a maximum will be trapped in local maxima. Even im-
2 [s—FO(x;,a)]% 25) proved nonlocal searches such as simulated annealing or ge-
|

netic algorithms (which are not exhaustive as the grid

method may be trapped far from the true value by the hier-
which looks superficially as a standard nonlinear least-squararchy of height structures visible in Fig. 2. A natural idea
sum. There is however one very important distinction, as wevould be to attempt to smooth the likelihood function oaer
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A direct smoothing approach would however require that theof model trajectory is added. Thus, initial conditions for a
likelihood be calculated on a dense grid, which brings usmodel on different segments become mutually dependent
back to square one. Any other smoothing method should beariables and onlx; remains a free parameter. In this sense,
strictly justified analytically, otherwise one faces the risk of multiple shooting resembles the shadowing technique of
unexpected surprise arising from the exponential instabilitydudd[14] (the difference being that Judd does not impose the
of the logistic map. condition of minimal square distance between the model and

The lack of a rigorous theoretical basis should not preventhe observed time seriedn other instances, the authors of
us from using the ML method, especially since other soluRefs. [2-4] also use different segments with independent
tions previously proposed in the literature turns out to benitial conditions applying multiple shooting inside each seg-
controversial. But some additional precaution must bement separatel{5].
pointed out. The exponential sensitivity to variations of the Here, we suggest another version consisting of fitting
initial value x; and ofa of the logistic map is actually the separately the parameters in each subinterval. In our “seg-
more stringent limiting factor for the usable sikeof time  mentation fitting” scheme, the parameteis allowed to take
series. For the parameteasfor which the logistic map ex- different values in different subintervals. Our segmentation
hibits the phenomenon of sensitivity upon the parametefitting scheme treats each subinterval absolutely indepen-
[10], the direct minimization of Eq(25) is not feasible di- dently of other intervals, and the resultirgestimates are
rectly even for time series as shortrat 70. averaged.

It is difficult to decidea priori what version of these two
methods gives the most efficient estimation of the parameter
a. We are going to show several examples in which the seg-
) o ~mentation fitting method results in smaller sample mean-

The following remarks on the parametrization of the sig-square deviations of tha estimates. However, we do not
nal of the logistic mapx; . ;= FO(x,,a) are helpful to mo-  gxclude the possibility that there are situations depending on
tivate our proposed solution. Formally, this parametrizationhe choice of the sample side the sizeK chosen to partition
using two parameters«(,a) is the most parsimonious. But, the time series inton=N/K subseries, and the noise level
as we saw above, it assumes unlimited accuracy of all relategh yhich the multiple shooting method has a smaller sample
computations and is not robust, not realistic and praC“Ca"anean-square deviation. We think that while these two meth-
useless. Instead, we can look upon a trajectory of the logistigys have probably comparable efficiency, the segmentation
map as a randomlike function forgetting its initial condition fitting method is somewhat simpler and has smaller bias.
after _some(not qqite explicitly defing):it!me interval ofK Both of them may be inconsistent ak—, or differently
iterations. Thus, if we have a realization of lendth we  \yorded, their consistency has not been proved analytically,
could look at it as if consisting ain=N/K different subre-  githough the bias can be very smaliNis large and the noise
alizations of lengthK. Each §ubr9allzat|on, in addition to a |eyel is small. Advocates of the multiple shooting method
common parametes, contains Its own parameter COITe- ofian assert that their method is unbiasedas, referring
sponding to its initial value; . 1, for j=1,... m—1. One {5 asymptotical consistency of ML estimates, and to argu-
can consider these initial values as unknown parameters, ifents of type: “Multiple shooting makes use of all available
a_ddition to Kkq,a). T_hg corresponding parametrization of the jnformation in a robust, reasonable way.” As we noted
signal of the logistic map by the set of parametersypove, there is no strict mathematical ground for such affir-
a,X1,XK+1, - - - Xk(m-1)+1 IS NOW robust. This robust pa- mations. We showed that robust parametrization leads to un-
rametrization has a very characteristic feature: the number qfmited growth of the number of fitted parameters. This in
parameters increases with the sample bizas we are going tyrn creates a situation where ML estimates can be biased.

to see, this property has an important consequence for thie give a simple example of such inconsistency of ML es-
ML estimation. This leads to the natural idea of cutting thetimates in the Appendix.

B. Addressing the sensitivity to small variations inx; and a:
multiple shooting versus segmentatior(“piecewise”)

sample 6, ... ,Sy) into K portions of some siz&, and to
treat each portion separately. If we minimize the total sum of
the residuals C. Practical implementation and tests
K oK of the “piecewise” method
> [si—FO(a,x)?+ 2 [si—FO(a,xcsq)]2+ - Let us cut the samplsy, ... sy into n; portions of size
i=1 i=K+1 no more tham,=20, and treat each portion separately. As
mK we said, this amounts to reestimating a different initial con-
+ [Si_F(i)(auXK(mfl)Jrl)]z (28) dition for_ (_—Z‘a_Ch such .sg.bseries,.v.vhich is a natural stgp since
i=(m-1)K+1 the sensitivity upon initial conditions amounts to losing the
information on the specific value of the initial condition.
over the parametes X, , Xk + 1, - - - Xk(m-1)+1, WE arrive at Our numerical tests show that our MLE works well by

a scheme similar to multiple shootiigee Refs[2-5]). It  considering subseries of size in the ramge=4—25(for the
should be noted that, in this scheme, the paraneetsikept true value ofa equal to the value 1.85 considered by Mc-
the same in all terms of the suf28), whereas the initial Sharry and Smitli1] that we take as our benchmark for the
valuesx; ;. are fitted separately in each term. In most of thesake of comparisgn For larger samplegsay, N=100), we
implementation of Refs2-5|, the constraint of continuity recommend to cut this sample infg subsamples of size
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TABLE |. Comparison of sample MSEmean-square error with respect to true vahwe1.85) of a
estimates obtained by two methods: multiple shooting and “piecewise” ML; initial vaJee0.3; number of
simulationsm=100.

Multiple “Piecewise”

shooting ML method
N n, n, Noise std a-mesh X1-mesh MSE MSE
14 7 2 0.1 0.005 0.005 0.086 0.090
35 7 5 0.1 0.005 0.005 0.058 0.050
70 7 10 0.1 0.0025 0.0025 0.040 0.039
40 20 2 0.1 0.0025 0.0025 0.051 0.035
60 20 3 0.1 0.0025 0.0025 0.042 0.027

n,=4-25, and treat them separately, and then to average tigession(7) is approximately equal@ip to the end termso
resultingn, a estimates. In order to determine the optimalthe square of the correct likelihood. Taking the logarithm in
value ofn, for a fixedN (sayN=100) and for the valua their Eq.(13) gives approximately twice the correct likeli-
=1.85 investigated here, we calculate the standard deviatiopood, which gives almost the same estimate as the exact

a over then, subsamples as a function of. We find that, likelihood. _
basically independently of the noise level the pairn, While this mistake has no serious consequences for the

=25n,=4 gives the smallest standard deviatan numerical accuracy of their calculation for long time series
We have implemented this approach and compared it firdh>2, it illustrates the difference between their construction
with the shooting method in Table I. One can observe thaff the likelihood and our direct approach presented in the
the two methods give comparable mean-square errors, withRfeceding section. By writing the conditional likelihood for a
slight advantage to the “piecewise” ML for largét. We also ~ Pair (s;,Sj+1) under a latent variablg;, and by averaging
observe in generalnot shown that the multiple shooting this conditional likelihood weighted by the invariant measure
method has a larger bias than the “piece-wise” ML. wn(x|a), McSharry and Smith suggest that, by doing so, they
We now turn to the comparison between the “piecewise”incorporate additional information on the system in question.
ML and the method proposed by McSharry and Srfiith If we had a usual probability space, then such averaging
would provide the unconditional likelihood of the pair
IV. ML VERSION OF McSHARRY AND SMITH (si,Si~1) but, for deterministically chaotic time series, the
AND COMPARISONS exact meaning of this averaging is not clear. Another ques-
tionable step of McSharry and Smith is to multiply these
The main result of McSharry and Smith's papéf con-  pairwise likelihoods as if the pairss(,s;;,) were indepen-
sists in their formulag13) and (14) for their proposed ML  dent. If this was so, this would indeed give the unconditional
cost function. Their idea is to substitute in the ML cost func-likelihood for the data sample,, ...,sy. McSharry and
tion the unknown invariant measuge,(x) of the dynamical  Smith avoid the maximization with respect #q in their
system(2), for a given value of the parameter for what likelihood (13) and(14) and replace it by an averaging over
should be a realization of the latent variabig's. Note that  a proxy of the invariant measure. It is doubtful that such a
a should be varied in order to determine the maximum like-step is warranted, not speaking of optimality, and we can
lihood. In practice, the integral over the unknown invarianthope that our approach would lead to a more efficient esti-
measureu,(X) is replaced by a sum over a model trajectory mate ofa.
(which can be calculated since the model is assumed to be We now compare our “piecewise” maximum likelihood
known) of length 7= N. Unfortunately, this most important approach in terms ofa(x;) proposed in Sec. Ill with the ML
step is not confirmed by any numerical resiee below. method of McSharry and Smith using numerical tests. We
Before continuing, let us note that there is a mistake in thesonsider 1000 time series witii=100 data points and sub-
probability density function PDF and likelihood given by divide each of them inta, =25 subseries oh,=4 data
their Egs.(7)—(9). Using the intuition that pairss{,s; 1) points. We fix the tru@ equal to 1.85 as in Reff1] and study
should be used in their Eq¢5) and (6) to track the deter- noises with standard deviations equal to 0.5 and 1.0. Table II
ministic relation betweewr; andx;;=F(x;,a), we see that shows a significant improvement offered by our “piecewise”
a single latent variablex; is associated with each pair ML method over the average ML of McSharry and Smith, at
(si,si+1) since s; is compared withx; and s;;; with  |east for the set of parameters studied here. It is not possible
F(xi,a). Thus, eaclx; is used only once when scanning all to guarantee that this will be the case for all possible param-
possible pairsg;,s;; 1), fori=1,... N—1 and in their ML  eter values but we believe our method cannot be worse than
cost function(13) and (14). Actually, the correct likelihood the average ML of McSharry and Smith. A difficulty that
should use only once eadbservedandom variables;, not  should be mentioned is that the chaotic nature of the dynam-
the latent variable; . Therefore, using pairss(,s;;+1), Mc-  ics and in particular the sensitivity of the invariant measure
Sharry and Smith take into account eaghi=2,... N—1 with respect to the control parameteis reflected in an ugly
twice, and the end values;,sy once. ForN>2, their ex- looking log-likelihood landscape shown in Fig. 8, with
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TABLE Il. Comparison between the ML method of McSharry and Srhithand our “piecewise” ML
method described in Sec. Il over 1000 realizations of the sys®mwith true valuea=1.85 giving 1000
time series of lengtiN=100, each of them decorated with Gaussian noise with two different standard
deviations(SD) (0.5 and 1).g; andq, are the sample quantiles at the 2.5% and 97.5% probability level, so
thatg,—q, gives the width of the 95% confidence intervals. Our “piecewise” ML method provides us with
an estimatiore of the standard deviation of the noise given in the last column.

Noise Mean(a) SD (a) a; ds g, 04 €

SD 0.5 Ref[1] 1.816 0.0714 1.630 1.925 0.295
“piecewise” ML 1.841 0.0390 1.762 1.913 0.151 0.459

SD1 Ref.[1] 1.764 0.123 1.510 1.975 0.465
“piecewise” ML 1.885 0.0467 1.781 1.959 0.178 0.766

many competing valleys. Standard numerical methods likean estimatiore of the standard deviation of the noise given
gradient or simplex are unapplicable. We have used a sysn the last column of Table Il. These estimates have a small
tematic 2D grid search. Other methods in the field of com-bias down(two fitted parameters were taken into account
putational intelligence, such as stimulated annealing and gevhich may be due to the fact thaj is not sufficiently large
netic algorithms, could also be used. The sensitivity of thgn,=25; n,=4; N=n;n,=100).
invariant measure with respect to the control paramater
means thz_:lt the invariant dlstrlbutlpn can bifurcate frc_)m an V. DISCUSSION OF OTHER APPROACHES
almost uniform distribution on the intervila,1] to a dis-
tribution consisting of threé functions(this happens around Meyer and Christensdrl3] have proposed to replace the
a~1.75). ad hocconstruction of the ML cost function of McSharry
In addition to performing better, our “piece-wise” ML and Smith by a Bayesian approach, assuming noninformative
approach does not depend on the noise level, in contrast witbriors for the structural parametey for the initial valuex,
the ML cost function(13) and (14) proposed by McSharry and for the standard deviation of the noise. Their approach
and Smith[1]. This is an important advantage when the trueimproves significantly on McSharry and Smith| by recog-
level of noise is not knowr(noise erroy. Our method is nizing the role ofx; but turns out to be incorrect, as shown
insensitive to such noise error while we have found exampleby Judd[14], because their approach amounts to assuming a
where the optimal estimation of the structure paramater stochastic model, thus referring to quite another problem.
with the method of McSharry and Smith is obtained for a Based on the formulation of Rdfl5], Judd[14] develops
value of the noise standard deviation different from the truea formulation which is almost identical to the likeliho¢g)
value. In general, the true noise level is not known and théut there are important distinctions. Similarly to us, Judd
method of McSharry and Smith does not apply in such situintroducesx; but he does not employ it. He prefers to elimi-
ation. Our “piecewise” ML method actually provides us with nate the dependency on by averaging this parameter with
a fiducial distribution(see, e.g., Ref8], Chap. 21, Interval
Estimation, Fiducial Intervals Judd incorrectly calls the
method based on his Eq&l) and(5) a ML method. In fact,
his Egs.(4) and (5) gives a a hybrid of ML, Bayesian and
so-called fiducial methods. It is a ML method with respect to
the structural parametex It is Bayesian with respect to the
initial value x;. It is fiducial since it does not assume aay
priori density forx;, but uses a prior density functigin(s;
—w) (using the notation of Refl14]) that is in fact a Gauss-
ian density of the noise with mean value equal to the un-
known initial values;. Using such density is equivalent to
weighting a two-parameter likelihood by weights corre-
sponding to different values of noise disturbances. Thus, the
averaged likelihood5) in Ref.[14] describes an ensemble of
different noise disturbances of an unknown initial valye
O'?. This provides a(reasonable but not optimaimethod of
elimination of the second parameter from the maximiza-
FIG. 8. Contour lines of the “piecewise” log-likelihood given tiON procedure. It is neither a pure Bayesian method that
by expressior(3) for a given realization oN=20 data points gen- Would assume explicitly some priori density forx; which
erated with a starting value,=0.9, a=1.85, and noise standard could be arbitrary, and not necessarily equalpfe; —w),
deviation equal to 1. The log-likelihood landscape is similar to anor a ML method for two unknown parameters as we sug-

two-dimensional Brownian sheétwo-dimensional generalization gested above in Sec. IlI.
of a random walk In this context in view of the emphasis on Bayesian meth-

1

0.95

< 0.9f: 2

0.851
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ods to solve this probleni13,14], it is perhaps useful to TABLE Ill. Estimation of the structural parameter by the
stress that the probability theory ruleP{A,B} method of statistical momenftexpressior{34)] for the logistic map

= P{A|B}P{B} is often freely called “the Bayes rule.” This Xi+1=1—ax’,a=1.85; the observations a=x+ 77 is a

is why the averaging of likelihoods over conditional state Gaussian random variabh(0,e). As in Table Il,q; andg, are the
variables can be called Bayesian approaches, although this§&@mple quantiles at the 2.5% and 97.5% probability level, so that
not quite correct since the latef$tate variables are not g,—q; gives the width of th(_a 95% co_nﬂdence intervals. _Each esti-
random values in the standard meaning of this notamit is mate fora and standard deviatiofSD) is based on 1000 simulated
assumed by McSharry and Smitlalthough the state vari- samples.

ables have a limit invariant measure, as we said above. Th§ | Noi

Bayesian approach assumes that parameters are random varpie oise

ues. We stressed already that the series of state variables A sb Estimate G b2 G2~
. € (a)=SD
be considered as a degenerate set of random values that are
determined by one single random variable, namelyWhat 100 0.05 1.87680.0926 1.684 2.000 0.316
is more natural? To considey as a random variable with a 1000 0.05 1.854#0.0418 1.774 1936 0.162

distribution determined by the invariant measure, or to con4gogo 0.05 1.85080.0136 1.824 1.878 0.054
siderx; as an unknown parameter to be estimated? The anmqg goo 0.05 1.84990.0044 1.842 1.858 0.016

swer, in our opinion, is dictated by consideration of effi- 1gg 01  1.84560.1546 1.499 2.000 0501
Ciency: the different exampIeS that we have explored Suggeﬁboo 0.1 1.85320.0815 1.693 2.000 0.307
that the latter is as a rule more efficigiias smaller mean- 10000 01 1.85050.0279 1795 1.908 0.113

square error at least for some combinations of sample size; 45 509
N and noise level. 100
As all the above has shown, the major obstacle is the los

0.1 1.8497¥0.0089 1.833 1.867 0.034
0.5 1.241%0.7331 0 2.000 2.000

of information on the initial value; by the unstable logistic 000 05 1.69070.3496  0.903 = 2.000  1.097
map beyond some limited numbelr o¥ iterations. We p?oposejggggo (0)'2 1'22238'3322 1‘71(15; 2'888 g'ggg
the simple recipe of cutting the time series in short piece ' ' ' ' ' '

and of averaging the estimations. Judd proposes a shadowing

method[14]. It is not obvious that this will result in a con-

sistent estimation and that this will overcome the intrinsic

difficulty in treating long realizationgwhich is a necessary 3

condition for unbiased estimations (SiSi+ 1IN (X)o = A(X7).. (32)

In sum, there is no analytical proof of consistency for all gegjges, averaging Eq), we get

the estimation methods discussed until nGncluding the

suggestions performed by the most convincing work to date (X),=1—a(x?).,. (33

[14] and our “piecewise” MD). It is useful to analyze the

only method to our knowledge for which one can derive aThis provides us with five limit relation®9)—(33) with five

proof of consistency in the present context, that is, theunknown parameterst,(x).., (x%).., (x*).., ande. Solving

method of statistical moments. these five relations with respect to the unknown parameters,
we get the so-called estimates of the method of moments:

(SN (X)ee+ 3(X) €7, (31)

VI. THE METHOD OF STATISTICAL MOMENTS A <5i5i+1>N+ 2<S>N_3(<S>N)2
The method of statistical moments provides a consistent a= 3(s)n(SIn— (%) ' (34
estimate of the parameters for nonlinear maps with ergodic
properties. The method of statistical moments is the unique (%)= (SN, (35)
theoretically proven consistent estimator among all methods
suggested so far by other authors. Although the moment es- (%), =(s?)y— &, (36)

timates are known to have little efficiency, they are consis-
tent. Consistency of all estimates suggested earlier including 1
ours above were confirmed only numerically, which is very (83 ==[(s)n—{(siSi+ )n], (37)
dangerous for instable nonlinear maps. a
We consider four moment of the observed time series:

(S)n» (PN (s¥)n, and(s;si . 1)n, Where the brackets stand o (=%
for time averaging over some time intervidl Building on €= 3s)n (38)
the knowledge that the seri¢s;} is ergodic[16] and using
Egs.(1) and(2), we obtain the following relations Because of the limit relation§29)—(32) (which are valid
because of the ergodicity of the time serfes} [16]), the
(S)N—{(X)un (29) estimateq34)—(38) are consistent iN— o,

We present in Table Il the estimates of the paramater
given by expressioi(34). The consistency of the method of
(s)N—{(X®)..+ €2, (300  statistical moments is clearly suggested by the numerical re-
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sults, as seen from the bracketing of the true valuedjy ( erable bias. Thus, averaging biased estimates as we proposed
+ SD and byq; andq,. However, as we already pointed may not result in a consistent estimation. Therefore, we can-
out, the method of statistical moments is rather inefficientnot assert that our ML methoths well as any other sug-

the ratio of its standard deviation farto that of the “piece- gested methodss consistent. We can only observe, for par-
wise” ML is about 4 forN=100 ande=0.1 for instance. ticular combinations of the considered parameters, the
numerically determined mean-square error of our suggested
estimates with respect to the true parameter value. We are
pleased if these errors are not too high, although our esti-

We have proposed a “piecewise” ML method to estimatemates can be biaséthough, with small bigs But we are not
the structural parameter of a deterministically chaotic low-8ble to make such bias arbitrarily small by increasing the
dimensional systertthe logistic map, which adds the initial  Sample sizeN, due to the instability under the iterations of
value x; to the structural parameter to be determined. Wethe logistic map which leads to a loss of information about
have compared quantitatively this method with the ML the initial valuex;. Thus, the situation is rather hopeless for
method proposed by McSharry and Smiftj based on an the establishment of a meaningful statistical theory of esti-
averaging over the unknown invariant measure of the dymation using the continuous theory of classical statistics to
namical system. A key aspect of the implementation of ousuch discontinuous objects as the invariant measures of cha-
approach lies in the compromise between the need to use®i¢ dynamical systems.
large number of data points for the ML to decrease a system-
atic bias and the unstable nature of dynamical trajectories ACKNOWLEDGMENTS
which loses exponentially fast the memory of the initial con-
dition. This second aspect prevents using our “piecewise” We are grateful to K. Ide for useful discussions. This work
ML for systems larger than 10-25 data points. For largetas partially supported by a LDRD—Los Alamos grant and
time series, we have found it convenient to divide them intoby the James S. McDonnell Foundation.
subsystems of very small lengths and then to average over
their estimations. Numerical tests suggest that this “piece- AppENDIX: ONE-STEP AND TOTAL LEAST-SQUARES
wise” ML method provides often significantly better esti- ESTIMATIONS
mates than previously proposed approaches.

The difference between the averaging over the invariant McSharry and Smith noticed that the one-step least-
measure and our “piecewise” ML of McSharry and Smith is Squares method gives strongly biased results for the estima-
reminiscent of the distinction between “annealed” versustion of a[1]. Indeed, the method of estimation of the param-
“quenched” averaging in the statistical physics of randometer a by the one-step least-squares method is evidently
systems, such as spin glas§d,18. It has indeed been inconsistent, since the deviatiofwf the random variablgto
shown that the correct theory of strongly heterogeneous mde minimized in a least-squares sense are
dia is obtained by performing the thermal Gibbs-Boltzmann
averaging over fixed structural disorder realizations, simi- Sir1—F(s,2) =X 1t i1~ F(X+ 7 ,a)
larly to our use of a specific trajectory of the latent variables
x;'s. In contrast, performing the thermal Gibbs-Boltzmann
averaging together with an averaging over different realiza-
tion of the structural disorder describes another type of physwhich has nonzero expectation equakte’. But, the funda-
ics, which is not that of fixed heterogeneity. This secondmental least-squares principle consists in the minimization of
incorrect type of averaging is similar to the averaging of thedeviations with zero mean. There are no least-squares
ML over the invariant measure performed by McSharry andschemes that would suggest to minimize random deviations
Smith. with nonzero mean depending on an unknown parameter.

There are several ways to improve our approach. Ondhus, itis not reasonable to include the least-squares method
simple implementation is to use overlapping running win-in any reasonable comparison.
dows. Another method is to reestimate the realized trajectory The method called by McSharry and Smith as “total least
by using the extended Kalman filter meth@wwever, diffi-  squares™(TLS) is applied in situation when the variables
culties may arise due to the existence of a maximum in th&re known only with some errorg; . This situation is called
logistic map. Using shadowing methods as proposed in Refin statistics a “confluence analysis,” or “estimation of a
[14] in our context would also be interesting to investigate. structural relation between twer morg variables in the

Let us end with a cautionary note. As we just said, the MLpresence of errors on both variablg§-8]. In such a situ-
approach for two parameters,k,) that we suggest here ation of confluence analysis, since tkgs are in fact un-
evidently works only for a limited sample si2¢ (perhaps, known (nuisancg¢ parameters whose number grows with
N<25 or so due to the sensitivity upon initial conditions of sample size, there is no guarantee of consistency of the ML
the chaotic logistic map. As is well-known in classical sta-estimates of the structural parameger
tistics, ML estimates have a bias that can be considerable if As an example, let us consider the very simple confluent
N is not large(say, N<100 or s9. The ML estimates are Scheme:
usually only asymptotically unbiased. Thus, fér= 25 (and
all the more forN=4), ML estimates can exhibit a consid- Y, =X+ %, (A2)

VII. CONCLUDING REMARKS

= mi11+2ax g +an’, (A1)
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Zi=Xi+¢. (A3) Thus, the MLE of the parameter obtained from Eq(A6)
satisfies
Suppose we observe a sample bf pairs (Y;,Z;),i
=1,... N, where X; are unknown arbitrary values and N
7;,{; are i.i.d. Gaussian random variables with standard de- 2:i 72
i+ dom variaples e > (Yi=Z)% (A7)
viation €. The problem consists in estimating the parameter 4N =1

e. Similarly to the situation with Eqg1) and(2) studied in
Ref.[1], no restrictions are placed on tigs. The likelihood

i . — . 2 = 2 1 i i i
L(e Xy, .. Xl(Yi.Z0)i=1, ... N) is Since E(Y;—Z;)°]=2¢%, the estimatdA7) is inconsistent.

A consistent(corrected estimate is
L(e,Xq, ... XN (Yi,Z), i=1,...N)

N 10
e 2N exp[ ~(12) 3 (Y- %)? “=on 2 -z (A8)

Thus, we see that the MLE of the structural parametés
inconsistent due to the increasing number of nuisance param-
eters. Thus, the direct use of the least-squarélLS) in the
The MLE X;’s of the X;’s (that coincide in this case with the confluent situation is not justified, and was not recommended

. (A4)

N
‘(1’262)21 (Zi—X%;)?

least-squares estimajesre in any statistical textbook. Instead, standard statistical works
recommend a “corrected” ML estimatesee, for instance
o YitZ Refs.[7,8)).
Xi= 2 (AS) We should stress in addition that there is a significant
difference between the standard confluent analysis and the
Inserting Eq.(A5) into Eq. (A4), we get problem addressed in RéfL]. Confluent analysis deals with
. arbitrary unknown(distorted arguments; , whereas in Ref.
L(el(Yi,Z), i=1,...N) [1], the latent variables; are related by the nonlinear map
N (2). The information on the structure of thgs is not used in
o e 2N exp{ _ (1/452)2 (Y,—Z)2|. (A6) confluence analysis while it can really help in the estimation
i=1 procedure as shown in Rdfl] and in the present work.
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